Gönderen Konu: Genel Matematik  (Okunma sayısı 8564 defa)

shade

  • Ziyaretçi
Genel Matematik
« : Ağustos 07, 2007, 09:48:52 »
Sitemizde Genel Matematik dersi ile problem yaşayan üyelerimize yardımcı olabilecek bilgiler.

Ünite - 2
Özdeşlik, Denklemler ve Eşitsizlikler



( # ) Parantez Açılımları

a ( x + b ) = ax + b Örnek: 4 ( x + 5 ) = 4x + 20

x ( x + a ) = x² + ax Örnek: 3x ( x + 2 ) = 3x² + 6x

Örnekleri çoğaltabilirsiniz.


( # ) Ortak Parantez Alma

x² + ax = x.x + a.x = x ( x + a )

Örnek: x² - x = x.x - 1.x = x ( x- 1 )

Örnekleri çoğaltabilirsiniz.


( # ) Tam Kare

Tam karenin hikayesi şudur: 1. karesi + 1. ile 2.'nin çarpımının 2 katı + 2.'nin karesi

Denklem ( x + k )² olsun.
Formül olarak ise x² - 2kx + k² ' dir.

Örnek: ( x + 2 )² = x² + 4x + 4

Örnekleri çoğaltabilirsiniz.



( # ) İki Kare Farkı

Genel formülü, x² - a² = ( x - a )( x + a ) 'dır.

Örnek: x² - 4 = ( x - 2 )( x + 2 )
Örnek: x² + 4 = ifadesinin özdeşi yoktur.

Örnekleri çoğaltabilirsiniz.


( # ) İki Küp Toplamı ve Farkı

x³ + y³ = ( x + y )( x² - xy + y²) veya x³ - y³ 0 ( x -y )( x² + xy + y² )

Örnek: x³ + 8 = ( x + 2 )( x² - 2x + 4 )

Örnekleri Çoğaltabilirsiniz.


( # ) Birinci Dereceden Bir Bilinmeyenli Denklemler

a ve b bir sayı ve a sıfırdan farklı olmak üzere,

ax + b = 0 birinci dereceden denklemdir.

Not: Birinci dereceden denklemi çözmek için x'i yalnız bırakıp eşitliğin diğer tarafındaki sayıya bölmek gerekir.

Not: Eşitliğin her iki tarafında da x değeri varsa eğer; x'li olan değerler bir tarafa, tam sayılar ise bir tarafa toplanarak işlem yapılır.

Örnek: 5x - 6 = 2x + 6 denkleminde x kaçtır.

5x - 2x = 6 + 6 ( x'li ifadeleri bir tarafa tam sayılı ifadeleri bir tarafa topladık)
3x = 12
x = 4 olarak bulunur.

Örnekleri Çoğaltabilirsiniz.

Not: Denklemimizde kesirli ifade varsa eğer, önce kesirden kurtarmamız gerekir. Kurtardıktan sonra denklemi çözebiliriz.

Örnek: 1/4 ( x - 1 ) = 2 denkleminde x kaçtır.

4.1/4 ( x - 1 ) = 2.4 ( Kesirden kurtarmak için eşitliğin her iki tarafını da payda ile çarptık. )
( x - 1 ) = 8 ( Denklemi çözebiliriz. )
x = 9


( # ) İkinci Dereceden Denklemler

a, b, c sayı olmak üzere ax² + bx + c = 0 şeklindeki ifade 2. dereceden denklemdir.

Örnek: x² + x - 6 ifadesinde a:1 b:1 c:-6'dır.



( # ) Kökleri Bilinen 2. Dereceden Denklemi Bulma

Kökleri a ve b olan 2.dereceden denklem ( x - a )( x - b ) = 0 şeklinde gösterilir. Buradan yola çıkarak formülü yazacak olursak ( x - 1.Kök )( x - 2.Kök ) = 0 olarak ifade edebiliriz.

Örnek: Kökleri 4 ve 6 olan 2.dereceden denklemi yazalım;

( x - 4 )( x - 6 ) = 0
x² - 6x - 4x + 24 = 0

Örnekleri çoğaltabilirsiniz.

( # ) Kökleri Bilinen 2. Dereceden Denklemi Bulma

x4 - 3x² - 4 = 0 denklemi üzerinden gidecek olursak,
Öncelikle kolaylık olması için x²'ye "t" diyelim. Bu, soruyu çözerken kolaylık sağlayacaktır.

x4 - 3x² - 4 = 0
t² - 3t - 4 = 0 olarak yazılır ve gerekli işlemler yapılıp t değeri bulunur.


( # ) Eşitsizlikler

Not: <<veya>> sembolleri hem büyük/küçük hem de eşit anlamı taşımaktadır. Karıştırmayınız.

a, b £ R ve a sıfırdan başka bir sayı olmak üzere ax + b > 0 veya ax + b <0>> 0 veya ax + b << 0 ) şeklindeki ifadelere 1. dereceden eşitsizlik diyoruz.

Not: ">> veya <<" olan tarafta parantez köşelidir "[ ]" ama "> veya <" var ise parantez normaldir. " ( ) "

Not: Eşitsizlik konusunu denklemler ile hemen hemen aynıdır.

Not: Bir eşitsizlik negatif sayı ile çarpılır veya bölünürse işaret yön değiştirir.

Örnek: 5x - 4 < 4x - 4 eşitsizliğinde x kaçtır.

5x - 4x < -4 + 4
x <0>> 5x - 11 eşitsizliğinde x kaçtır.

3x - 5x >> - 11 - 5
- 2x >> - 16
x << 8 ( "-" ile bölündüğünden dolayı işaret değişti. )
( - sonsuz, 8 ]

Örnek: - 3 << 6x - 15 << 3 eşitsizliğini çözecek olursak.

- 3 << 6x - 15 << 3
-3 + 15 << 6x << 3 + 15
12 << 6x << 18
2 << x << 3 ( 2 ile 3 arasındaki sayılardır.) [2, 3]

Örnekleri çoğaltabilirsiniz.



( # ) İkinci Dereceden Eşitsizlikler

Örnek: x² - 3x << 0 köklerini bulalım.

İlk kökü 3'tür. İkincisi ise 0'dır. [3, 0] olarak ifade edilir.

Örnekleri çoğaltabilirsiniz.

( # ) Köklü Denklemler

Örnek:Karekök içinde x - 3 = x + 4

çözmeden önce kareköklü ifadeyi karekökten çıkarmak için eşitliğin her iki tarafının karesini almalıyız. Devamına bakalım,

x - 3 = ( x + 4 )² denkliğinden
x - 3 = x² + 8x + 16
x - 3 - x² - 8x - 16 = 0
x² + 19 + 9x = 0 'dır.

shade

  • Ziyaretçi
Ynt: Genel Matematik
« Yanıtla #1 : Ocak 21, 2008, 11:36:51 »
FONKSİYONLAR

Tanım:A ve B gibi boş olmayan iki küme için, A nın her elemanını B’nin bir ve yalnız bir elemanı ile eşleyen A’dan B’ye bir f bağıntısına A ‘dan B’ye FONKSİYON denir.

Kısaca, A’dan B’ye bir bağıntının fonksiyon olması için,

a) x A için (x, y) f olacak biçimde y B olmalı.

b) A kümesinin bir elemanı B kümesinin birden fazla elemanı ile eşlenemez.

A kümesinin f fonksiyonunun TANIM KÜMESİ ve B kümesine f fonksiyonunun DEĞER KÜMESİ denir.

f fonksiyonu x A’yı y B’ye eşliyorsa y’ye x’in görüntüsü denir ve f: x y veya y = f (x) biçiminde gösterilir.

Ters Fonksiyon:
f: A B ye, f: x y = f (x) fonksiyonu birebir ve örten fonksiyon olsun. B A ya ve y x fonksiyonuna f in tersi denir ve f-1 şeklinde gösterilir.

f: A B f-1 : B A
f: x y = f (x) f-1 : y x = f-1(y)


Bileşke Fonksiyon:
f: A B ve g: B C birer fonksiyon ise A’daki her elemanı f ve g fonksiyonları ile C’nin elemanlarına dönüştüren fonksiyon f ile g’nin bileşkesi denir.

Özellikleri:
1) fog gof
2) (fog)oh = fo(goh
3) fof-1 = f-1 of = I ( I birim fonksiyon)
4) foI = Iof = f
5) (f-1)-1 = f
6) (fog)-1 = g-1of-1
7) (fogoh)-1 = h-1 o g-1 o f-1
8 fog = h f = hog-1 ve g = f-1 o h


shade

  • Ziyaretçi
Ynt: Genel Matematik
« Yanıtla #2 : Ocak 21, 2008, 11:38:52 »
Çözümlü Örnekler:

1. R R’ye iki fonksiyon, f (x) = 2x – 1 ve g (x) = x + 1 ise (gof)( - 1) nedir?
Çözüm:
(gof)(- 1) = g(f(- 1)) = g(2.(- 1) – 1 )
= g(- 3) = - 3 + 1 = - 2

2. f ve g : R R’ye
f (x) = 3x + 2 ve g(x) = ise, (fog)(x) ve (gof)(x) fonksiyonlarını bulun.
Çözüm:

3. f ve g : R R’ye
f (x) = 2x + 1 ve (gof) (x) = 3x + 2 ise, g(x) nedir?
Çözüm:
(gof of-1)(x) = (3x + 2) of-1

g (x) = (3x + 2) of-1
f (x) = 2x + 1 f-1 (x) = dir.

4. f ve g : R R’ye f (x) = ve (fog)(x) = 6x + 1 ise g(x) = ?
Çözüm:
(f-1o fog)(x) = f-1 o (6x + 1)
g (x) = f-1 o(6x + 1)
f (x) =
g (x) = (3x + 1) o (6x + 1)
g (x) = 3. (6x + 1) + 1 = 18x + 4

5. f ve g : R R’ye
(gof-1) (x) = ve g-1 (x) = 3x – 1 ise f (x) nedir?
Çözüm:
(g-1ogof)(x) = g-1 o

shade

  • Ziyaretçi
Ynt: Genel Matematik
« Yanıtla #3 : Ocak 21, 2008, 11:49:53 »
ÜSLÜ SAYILAR

3 x 3 x 3 x 3 x 3 ifadesini kısaca
3 üzeri 5 şeklinde yazabiliriz.

3 x 3 x 3 x 3 x 3 = 35 tir.
35 sayısı üç üssü beş veya üçün beşinci kuvveti diye okunur.
Bu sayıda taban 3, üs ise 5 tir.

Örnek
2 x 2 x 2 = 23,
3 x 3 x 3 x 3 = 34,
a x a x a = a3,
a x a x a x a = a4* gibi yazılabilirler.


Tanım
a bir gerçel (reel) sayı ve n bir sayma sayısı olmak üzere,ifadesine üslü ifade denir.
k . an ifadesinde k ya kat sayı, a ya taban n ye üs denir.

Üslü İfadenin Özellikleri
a ¹ 0 ise, a0 = 1 dir.
0 üssü 0 tanımsızdır.
n Î IR ise, 1n = 1 dir.
(am)n = (an)m = am . n
Pozitif sayıların bütün kuvvetleri pozitiftir.
Negatif sayıların; çift kuvvetleri pozitif, tek kuvvetleri negatiftir.
n bir tam sayı ve a bir gerçel (reel) sayı olmak üzere,
a. (– a)2n = a2n ifadesi daima pozitiftir.
b. (– a2n) = – a2n ifadesi daima negatiftir.
c. (– a)2n + 1 = – a2n + 1 ifadesi
a pozitif ise negatif, a negatif ise pozitiftir.

Üslü Sayılarda Sıralama
1 den büyük üslü doğal sayılarda sıralama yapılırken,
Tabanlar eşitse; üssü küçük olan daha küçüktür.
Üsler eşitse; tabanı küçük olan daha küçüktür.

Üslü İfadelerde İşlemeler
1.x . an + y . an – z . an = (x + y – z) . an
2.am . an = am + n
3.am . bm = (a . b)m

Üslü Denklemler
1.a ¹ 0, a ¹ 1, a ¹ – 1 olmak üzere, ax = ay ise x = y dir.
2.n, 1 den farklı bir tek sayı ve xn = yn ise, x = y dir.
3.n, 0 dan farklı bir çift sayı ve xn = yn ise, x = y veya x = – y dir.


Çevrimdışı shade

  • Daimi Uye
  • *****
  • İleti: 392
  • Teşekkür: 31
Ynt: Genel Matematik
« Yanıtla #4 : Nisan 15, 2008, 09:11:19 »
LİMİT

BİR FONKSİYONUN LİMİTİ

TANIM
A R ve f: A – {xo} R ‘ye bir fonksiyon F(x) olsun. x değişkeni xo R sayısına yaklaştığında f(x) fonksiyonu da t R’ye yaklaşıyorsa t gerçel sayısına x, xo’a yaklaşırken f(x) fonksiyonunun limiti denir ve lim f(x) = t
x xo
şeklinde gösterilir.

SAĞDAN VE SOLDAN LİMİT:
SAĞDAN LİMİT:
y = f(x) fonksiyonunda x, xo R değerine sağ taraftan yaklaşırken f de bir t1 R değerine yaklaşıyorsa t1’e fonksiyonun sağdan limiti denir ve lim f(x) = t1 biçiminde
x x+o
gösterilir.

SOLDAN LİMİT:
y = f(x) fonksiyonunda x, xo R değerine sol taraftan yaklaşırken f de bir t2 R değerine yaklaşıyorsa t2 ye fonksiyonun soldan limiti denir ve lim f(x) = t2
x x-o

ÖRNEK:
x2 + 1, x 0 ise,
x + 1 , x < 0 ise,

fonksiyonun x = 0 noktasında limiti nedir?

ÇÖZÜM:
lim f(x) = lim (x2 + 2) = 02 + 1 = 1
x 0+ x 0+

lim f(x) = lim (x + 1) = 0 + 1 = 1
x 0- x 0-

O halde lim f(x) = 1 dir.
x 0 [/b]

Çevrimdışı cilginturk54

  • Okuyucu
  • *
  • İleti: 8
  • Teşekkür: 0
Ynt: Genel Matematik
« Yanıtla #5 : Nisan 29, 2008, 13:31:13 »
teşekkürler